Multi-View Matrix Completion for Clustering with Side Information

نویسندگان

  • Peng Zhao
  • Yuan Jiang
  • Zhi-Hua Zhou
چکیده

In many clustering applications, real world data are often collected from multiple sources or with features from multiple channels. Thus, multi-view clustering has attracted much attention during the past few years. It is noteworthy that in many situations, in addition to the data samples, there is some side information describing the relation between instances, such as must-links and cannot-links. Though side information has been well exploited in single-view clustering, they have rarely been studied in multi-view scenario. Considering that matrix completion has sound theoretical properties and demonstrates excellent performance in single-view clustering, in this paper, we propose the first matrix completion based approach for multi-view clustering with side information. Instead of concatenating multiple views into a single one, we enforce the consistency of clustering results on different views as constraints for alternative optimization, and the global optimal solution is obtained since the objective function is jointly convex. The proposed Multi-View Matrix Completion (MVMC) approach exhibits impressive performance in experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speedup Matrix Completion with Side Information: Application to Multi-Label Learning

In standard matrix completion theory, it is required to have at least O(n ln n) observed entries to perfectly recover a low-rank matrix M of size n × n, leading to a large number of observations when n is large. In many real tasks, side information in addition to the observed entries is often available. In this work, we develop a novel theory of matrix completion that explicitly explore the sid...

متن کامل

Matrix Completion with Noisy Side Information

We study the matrix completion problem with side information. Side information has been considered in several matrix completion applications, and has been empirically shown to be useful in many cases. Recently, researchers studied the effect of side information for matrix completion from a theoretical viewpoint, showing that sample complexity can be significantly reduced given completely clean ...

متن کامل

Robust Multi-View Spectral Clustering via Low-Rank and Sparse Decomposition

Multi-view clustering, which seeks a partition of the data in multiple views that often provide complementary information to each other, has received considerable attention in recent years. In real life clustering problems, the data in each view may have considerable noise. However, existing clustering methods blindly combine the information from multi-view data with possibly considerable noise...

متن کامل

Clinical Document Clustering using Multi-view Non-Negative Matrix Factorization

Clinical document contains vital information like symptom names, medication names, age, gender and some demographical information. These information can be used for giving quick relief from a disease. In existing system, they had built a system for clustering symptom names and medication names using Multi-View Non-Negative Matrix Factorization. While considering the clinical documents the facto...

متن کامل

استفاده از نمایش پراکنده و همکاری دوربین‌ها برای کاربردهای نظارت بینایی

With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017